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ASPECTS OP,CODING

1. INTRODUCTION

. \ 11,1 What is Coding?e
Coding is,a branch of information and communi,pation

.
. <

science. Alt draws extensively upon manlr.,dverse

mathematiAllields:,.primarily abstract`'and rinear

-.algebra, numbr theory, probability 'and statistics, and

'combinatorial theory. 'If you.arel frustrated

applications-oriented aigebra'ist seeking aThreal world"

outlet for your knowledge, coding juSt'Might be the. -

answer.

Coding can be thought of as a sort of reverse

shorthand. By means,of shorthand one is able, byomitting

certain letters from words, to reduce transcription time.

Howevei, this saving intiMeis counterbalanced by'the

fact that one'is more likely.tolnisread a shorthand word

than an English language word. In,cading, information, ij
7 A

the form of blocks of binary k-tuples, is transmitted over

a npisy channel." The noisiness of the channel presents

the-posiibidity that the received ,17,tuple may differ. from

the transmitted one. 141;v/ever, by lengthening each k-tuple

to be transmittedby adding digitOo it, channel disttv.c
- tion is made less likely. Of course, these additional

digits increase transmission time.'?:? A central problem

1 of coding; is 'to find the most effiiept,way'of.adding

the so-called :chedk

- 1.2 The 'Coding Process

The processes ,involved in coding are illustrated in

the flow-dhatt in figure The binary encoder receives
.

the'discrete outputs of a communications device and

associates a binary k-tuple (k a predetermined positive

.

Bin'ary

Encoder
Channel

Encoder -4- Channel.
Channel

Decoder

. -

Binary'

Decoder

Figure 1.1 The coding process."

173integet) With'each of them. These outputs may be 1tbe.

farm of human slieechs,h.igh-frequency radio waves, nuniericalt.

dataLy!in a host of other-forms. The k- tuples so formed

are calledmeseages: The channel encoder,receives a

message from the binary encodel; and, by adding n-k binary

digits to it, forms a binary n-tuPle (n also a predeter- ,

mined positive integer, greater than k). The set of all

n-tuples farmed in this manner is called a cocTh and thd.

11-tUples in the -code are called codewords. The channel

is the medium of transmission (e.g., telephone lines,

high frequency radio links, space communication links).

We assume tha-t the channel is nosy.(i.e., 'what goeS' in

is npt necessarily what comes out")..

The cpding-sequence is thus: An output enters'the

,binary encoder wgPre necomes." a' message which in turn
"becomes" a codeword. The channel (posSibly) perturbs`

this codeword into another binarj, n-tuple and transmits

this (possibly) perturbed n -tuple to thchannel decoder.

Upon receipt of this (possibly) perturOd n-tuple, the

channel decoder, which has knowledge of a.,1 possible

cdOewords, attempts to determine which codeword in fact

entered the channel: The channel,decoder then sends it,5)4

decision (a codeword) to the binary decoder,which, by'

simply reversing the procedure pf the channel. encoder,

determines the message contained in the.codeword received.

If the channel decoder make's the correct decision, the

me'ssaie,laving the binary encoder is identical to the

Message leaving the binary decoder.

7
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1.3. The Chanoel
. .

There are several mathematical model& for the

fchannet. ,We shall deal excIusiVelY with, the Binary

Symmetric Channel (BSC). A schematic%diagram of this

channel appears in:Figure 2.

Figure 2. The Binary Symmetrit Channel.

With the BSC a given bit (0 or 1) has probability q-.

of being transmitted unaltered and each has probability

p = 1 - q of being changed into the other. The BSC

assumes that ep-ors occur randomly and 'independently of

one another. We shall stipulate that p < q(actually, to

be considered a."good:;BSC p has to be 'on. the 6rder of
10 -5)

,

- 1.4 Decoding

The Channel decoder assumes all codewords are

equally likely to hdve.been transmitted and makes its
*

decisions'according to Ne principle-of maximum likelihood:

. receivedn:tUple:r is decbded .into that ,

codeword c which differs'from r in the

least number of places.*

;

6
It is now time for an example.

Example 1. Suppose we havp.a coMmunications device-

with four outputs,a,'b, c, d, and choose k = 2 so that

*In.the event of "ties" additional decoding 'criliamust be
given.

-' 9

'

a

leach of them is rePresented by a binary 2-tuple, say

aH-00, b.,14. 10, c44.01, d44-11.' Without channtl encoding

a message would have to be.transmitted thr6ugh the BSC

without error inorder to be correctly iiterpretea: The

iprobabiliitY of this happening is' q2. Lei Lis. see what
. .

happens if we add two check digits to each message.' .,(We

are taking n = 4. 'Precisely how these check digits are

chosen is discussed later and is, of Course, of crucial
It

importance, but not for the purposes of this example.)

We then obtain the four codeWotds 0000, 1001, Olif, 1110.,
,

.

Now: using, maximum likelihood decoding, we make up the
,

folloWing decoding table.

,

.

,

*. -t.

0000 1001 0111 1110'-

000 '1101 0011 , 1010 i .

0010 011 0101 1100

0001 1000 0110 1111

II

At the top of each column appear the codewords. The'

other 4-tuples appearing in a column qre those 4 -ttpies

which differ from the codeword ate the top of the column

in fewer places than they differ from the-other Codewords.

(Ties have been broken by assuming an errqr has occurred
,

in position 4.) All 16 binary 4-tNples appear in the

table and if a 4tuple r is received at the channel

decoder-it is decoded'into the codekord c at thetop of

its column. _ '

Have we actually increased the probability of

correctly interpreting a message by resorting 'to this

procedure of adding check digits? A codeword will be

correctly decoded if and only if it or any 4-tuple appear.-

z - ing in its column are received. Each of the noncodewords

appearing in a coluinn differs from the codeword at the

top it exactly'one of the positions 2, 3, or 4. Thus if

a giveh codeword is transmitted, 'the probability of it

or'a 4-tuple appearing in its column beingreceived is

4
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0

4
+ 3

3
=pq which can be shown (see Exerctse 3) to be

2
greater plan q (the non-encoded probability) as long as

p_
-

Exercises

1. Form a decollta table for the code'consisting of the Tour

codewords food, .01 1, 10011, 01101.

2. For the code ln Exercise 1, if the codeword 11000 is.transmitted,
0

'What is. khe probability that it will be correctly decoded? '

.,;`,.. '.

3. .6ow that .1114 -g 3pq3 > cr i 1! pr Q. s

. . ./

1.5 hannon's Theorem
.

With regird to Example 1 another question arises,

!Tan we do better?"' That 4s, can we somehow'alter

our .code (to Otain,t new and different code) so as to

increase the probability of correct decoding? In dealing

with this question we sh411 fodns upon, theseicts of

changing'k and/or. n and not upon the actUal,,binary digits(

in Our messages and codewordb. It seems plausible that .

by fixing k and.increasing,n, say -by repeating the message

' a sufficient number. of times, we can obtain a code with
,

probabili Y of correct decoding as close to 1 as we desire.
)

However, is.method of repetition-ha's 'the serious Tlraw-

I. back of greatly incteasirg transmission time'.and decreasing

the codp rate kin.', Generally speaking, 'in forining "koodC
I L -

codes we.s/ek to maximize both the code rate Ad'the,1

prObability of correct decodidg. By' virtue of a :
*:4 .

.rearkablq theorem we can state. categorically thasUch
.*.

'codes do indeed exist: A . ,
. .

.,..:,

.,
. Theorem 1 (Shannon's Fundamental/ Theorem of Coding3. '../. 4. Hoy many codewords are there in.an (n,kr code'?

. . ,

Let K be the capacity* of a given BSC. Given any real
5: Show that the three 5-tuples.(1,0,1:0,0), (1,0,0,1,1), (1,071,1,1)--

numbers R and c, where 0 < R < K. and c > 0, there exists.
ft

constitute a inearly independent subset of V5. A ..
:

*Capacity is a positive number associated with a BSC and is a 6. Find thb codew6rds In lhe (5,3) code which has the vectot4-,in
function of the probObility p only. In fact, we have ...I s

K = 1 - p log2 p - (1-p) log2(1-0 Exercise 5 as a basis.
.

. . 5
.

.1
,. .

4.,0

-

a.code withcode rate > Wand probability,. of.cprrect

decbdiqg > 1- E.

The proof of this theorem es4ablishes existence
N

,nopcunstructively. This is veryunfortunate ortdnate?).N
'fer it- forces Us into an in -depth study of coding in order

to produce desirable codes. This is 'prpci'sely what, we

initiate in the next ch4ter.

s LINEAR CORES

/ . ..

2.1 The Code Concept Refined
'

.. .. . .
, ,

Until cnOw the only way tge have of describing a ode, is ,

.
.N...--

, as a subset of binary n-tuples. . As there is not much.bne
..

can say about or do (kith arbitrary s'ets''of,n-tuples,.we-
,

shall have to restrict our concept of a code somewhat.

This restriction will, however,pay'great diyidends.in.

the quality of the results obtained. 9'
-

, Let Vm be the vectorstiece of, binary Atuples over

GF(2). The field GF(2) is,the two-element (0 and 1) field

. of binary arithmetic, withO + 0 =' 1 -+ 1 0,. .

1 + 0 = 0 + 1 = 1, 0: 0 = = 0'- 1 =- 0, 1 1 =,1. Thus,

the elements of Vn are n-tuples of zeros and ones from

this .field.

7

Zinear code'is a k-dimensional
.

subspaCe Of V.,.

In what follows the adjective linear will be omitted

and we shall simply -14eak of the (n,k) code C or, simply,.

the tode.C. .

r

Exercises

1 0 11
6



2.2 Hamming Weight and Hamming Distance

Let x be a vector (n-tuple) in V
n

. The HammingHing
(5)

. _

weight, w(x), of x is the number of l's appearing, among'

the coordinates of x. From the definitions of binary and

vector addition we see that the only coordinate positions

where x+y has a 1 are those positions where x or y (but

riot both) have a 1. Therefore
.4

(1) w(x+y) < w(x) + wcy).

* The Hamming distance,+d(x,y), between two n-tpples

Xandri.S.'ilie'fi''b'er of positions in which they differ,,

Note the.; (
d(c,r) = w(c-r) > w(ak) = w(r-c.) = 0(c.,r)*

2
k

h
V
n

= u (c.+A). i (disjoint)
i=1 . _

. In terms of Hamming distance, maximum likeZihood

decoilinmeads as folloWs: A received n-tuple r is

decoded into that codeword which minimizes {d(c,r) /ccC }.

AS a consequence of Equation (5), for any received n-tuple

r thbre exists a unique codeword 6, and an a
k
in A such

that r = . + ak. . Then for any c in C we havec)

. ,

(6) c-r = c- (c
j
+a

k
) = a k+(c-:c j) e ak + C

(2) d(x,y) = w(x-y)

and d is a metric. That is

(i) d(x,y) > 0, with eqUality holding if and:

. only if x 7 y.

(3) (ii) d(x,y) = d(y,"x)

- (iii) d(x,y) < d(x,z) + d(i,y).

Exercises

7. Use Equation (2) to establish the fact that Hamming distance sat=

isfies Equations.(i)-(iii) in (3) above, so that it is a metric.
sr.*

2.3 Decoding Revisited

Viewing V
n

as a group (with respect,to n-tuple
_

and an (n,k) .C.dde C as .a Supgroup, we may form the

coset decomposition orVn with-respect to C.

'24-k ,-;:
-..

(io. V = d (a.+C), 0 (disjoilt )-,.
.

. .

i=1 ':, ,-

.

. 114 2.4 The_ Generator-and parity - check Matrices

"where'.-thecosetrepresentativesai are chosen to be

n-tuples of minimum weight in their cosets. Letting

A = {ai } andC=.{ci }, it tollows directly from Equation
.

iThicl1\ tells us that r, should be decoded as c.

\ P From the result above we can deduce that the rows of'

the decoding table for C are the cosets appearing in Equa-

, tiOn (4). This observation allows for the simple

construction of the table. The algorithm is as follows:

is standard, the first row consists of the codewords ,

themselves. Of the remaining n-tupies, one of minimum

weight is chosen and placed under, the zero codeword. Each

of the remaining n-tuples in the second row is the sum of

the codeword immediately above it and this minimum - weight

..,,.n-tuple (see th4 decoding table in Example 1). Now once

\1..againan n\tuple of minimum weight is gelectedJrom the

remaining n-tuples, placed under the zero codeword, and

the third roN. is filled out as was the second. The

procedure is repeated until all n-tuples are exhausted.

Exercises

8: Form a decoding table for the 15,3)'code of Exercise 6.

(4) that
1'2

. , .._.

7.

A k x n matrix whose rows are basis vectors for an

(n,kI code C'is called'a geniratorimatrix. Writing down '

*Note that ak = -ak.

a,
a .....4Aa.

8

13



such a mitrixis actually a compact way of specifying a n-k matrix H' = [P
T
In-k) satisfies the equation_

.......- ,

. ,code,-for knowing its k rows enables us to determine all
T

the 2 k G'H' = 0,codewords in the cods. (This is a significant

observation, for there are codes in use with.k greater from which we conclude that H' is..a parity-check matrix.
than fifty.) for C'. Applying p-1 to the column's of H' will produces

,

.
.

The subSpace of-tin orthogo .parity
..

check matrix H for C.C is denoted by CI ....,..

and called the dual code of C. That is Example '2. Thg matrix
,

..,

G - [1 0 0 1 1
0,

1

.

. ,
. _.

), .
1 0 1 0.0

. ,
Cl i ='{XCVnIXy = 0 for all ycv

4 1 1 1
where x.y is t'he usual dot product of n-tuples. Since the .0

e
.

.

dimension'of Cl qsn-k, C1 is an (n,a-k) code.*
.

is a generator matrix for the (5,3) code of Exercise 6.. - .. .
,, Let H be an .(n-k) rn generator matrix. lOr Cl. Then The reduced echelon form of G is

. .

(7) x c C if 'and, only if x H
T

= 0. ;

Letting x = (x1, x2, ...., xn), and denoting by hij the

- entry in the ith.row and jth column of H, we may rewrite

Equation (7) equivalently as

n
(8) x c C if and only. if x.h = 0 for i = 1; n-k.

. j=1 J lj

-'Since we are working,over'GF(2), Equation (8) says xis a
codeword if and onlyif the-number of integers j for &which

bothi.and h. are 1 is even for each i = 1, n-k. -

Fdr tilt reason we call H,a,parity-chek matrix for C.

Suppose G is a ,generator. matrix for art (n,k)'code C

The reduced echelon i orm.of G also serves as 'a generator

matrix for C. By permuting certain column's of the

reduced echelon forM of G we obtain a kxn matrix of the

form G' = [IkP], where.Ik is thek)jkidentity matrix and

P is a k )n-k) matrix (call the permutation involved p).

, The matrix G' can be thought of as a generator matrix for

an (n,k) code C'. It can easily be verified that the rank

*A proof that dim CI = n-k may be based upon the observation
that Cl can be identified as the solution space of a system of k
linearly independent equations in n unknowns.

9

0

E= 0 1 0 0.,

0 0 0 1 1

By-applying the permutation

= 243)

(written in cycle form) to the columns of E, we obtain the
matrix

4

0 0 0 0

G' = 0 1 0 0 0

0 0 1 0 1

which is opthe.form II3P). Then

[0 0 0 1 0

=sEPT/2) 0 0 1.0.1] '-

and applying -

p = (234)

to the columns of this matrix we get

J H [0 1 0 0 0i_

0 0 0 1 1) ,

1

15

t ,

10



=2.5 Systematic Codes

Codes 14ke the code C' of the preceding section,'

;which have a, generator matrix of the form 'G', are called

.S.ystematid codes. The,,study of,systematic codes is

-greatly facilitated by,the simple nature of their generator

matrices. For let TIA, rt be therows of G'. ThenA
xeC' if and only if there exist scalars (binary digits)

al, ak such that

'k . .

x =
1

Iai
'

. 0, .

Upon expanding this sum we get

xe C', i1 and- only if x -f. (al, ..., ak, ak+i, ...

k.
(9) whdre ai=iElaigli for j = k+1, ...., n and

gij its the row i-column j'entry in G'.

a
n

)

Thu, -the first k door. nates (the message digits) of

. t codeword in.C' can.b'e ch.sen arbitrarily while-the

remaining n-k coordinates ( he check iligits) are linear .

combinations of these message gits.

Example 3. If C = (1,0,1,C4, s).is.to be a codeword

in the systematic code C' generated by the matrix of

Eximple 2, then we must` have

A

G
4

C
1 1
g'

4
+ C

2
g'

4
+ C

3 34
g'

"

= 1.0 + b0 +1.0 = 0.

C5 = C1g1S + C2g'25 + Csg'ss = 1.0 + 0.0 + 1.1 = 1.

Exercises e

440
9. What .relationship exists between the codewords of C and T1?

10. 'Find the matrices G', 14', and H for the (6,3) code with

generator matrix

0 1

i; L G= [1' 0

0 0

1 1 1

1.0 1

0 1 1

0

1.

1

,

11

tg , 1

1.1% Find the,check digits for the codeword with message dfgits

111 in the (6,3) code of Exercise 10.

3. ERROR CORRECTION

3:1 A Crites -ibn for Code Quality

Suppose that the channel is sufficiently reliable

for the channel decoder to assume that at most terrors

(i.e., t alterations, .t a positive integer) occur in
.N

a transmitted codeword: Can we then be one hundred

percent certain that the decoder will decode correctly?

If the answer is yes, for every codeword in the code,,we

say the code is t error-correctlng: "More precisely, A

. .code.0 is t error-correcting,if the closed balls

{3(c,t); cdC},-

wIltre

g(c,t) = txcVnid(x,c) < ti,

are pairwise disjoint.

In view of .the factthat w(x) = d(x,0),

dtx,y) = w(x -y), and a code is a subspace (so Xhat.x-y is
- .

the code whenever x and y are), we may conclude that W,

,the minimum weight of all nonzero'co e s, is equal to

D,.the minimum distance between different codewOrds. It.

.,seems intuitively clear that fora code to be t error-

correcting, the codewords have to be "sufficiently far

apart.".- Just how far apart is revealed in the'next theorem.

Theme orem 2. A code, is t error-correcting if'D > it+ r.

Proof: Supposeinot. Then there exist two codewords,w

cl and c2,'such that the closed balls g(ci,t) and'g(c2,t)

have an n;.tupler all it r, in common. Then

(10) d(ci,c2) S d(c + d(r,c2) < t+t < 2t + 1.

But,

. 1.7
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(11) d(c1,c2) = w(c1 -c2) >. * = D > 2C+ 1,

.

so.we! have arrived at a contradiction and the theorem is
proven.

-
,

',..-

or--
. .

Exercises

12. Establish,the converse of Theorem 2. That is, show a code is

t error-correcting only if D > 2t + 1.
'

13. Commention Ole.error-correcting capabilities of the code in

Exercise 6.

3..2 Error Correction and the Parity-check,Matrix-

Ail extremely elegant and simple characterization of

) t error-correcting codes may be expressed'in terms of the
paiity=teck. matrix.,

. ,

Theorp.3. LetH be a parity-check matrix for a code C.

every subset of 2t columns' of H is linearlyindepehdent,

then C4s.t.error-correcting.

Thisresult is an immediate consequence of Theorem,2
and the followinemma.

Lemma 1. If C has a codeword c of weight w, then some w
xblumns of H are linearly dependent.

' q,r.00f: Let c = (c1, cn). NoW wfc)"= w means

'that exactly w.of the (c0 are 1 (which we may assume to

1?e, without loss of generality, coordinates11, 2, w).
Now c e C means

, \

(v) c 1T = 0.

jlenoting,the columns of H by h1, . hn, Equation (12)
-may be rewritten equivalently as

43) Icihi = 0

or, using tiwficalues of the xi,

\ 18-4
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101.

w
,

) (14) Eh. = 0.

O

Eqhation (14) says the first w columns of H are linearly

dependent and the lemma is proven.
*

3.3 Hamming Codes

We put theorem 3 to immediate use:" Let be a,

positive integer and let H be 'the mx(iR-1) matrix whose
", -.columns are the binary representations of the integers

;1, ..., 2m-1 respectively. For m 3,
.

0 0 0 1 1 1 1

H= 0 1 1.0 0 1 1 .

1 0 1 0 1- 0 1
d

Since H contains the m coSumns'of the identity matrix Im,,/
rank H = m and H can.serve as a parity-check matrix for a
(2m:1,2m-l-m) code C, a type of cede referred 'to as a

Hamming code. Since two nonzero binary n-tuples are

-linearly dependent if and only if they-aeltentical,

every pair of colus of -H are linearly independent..

Hence, by virtue of Theorem 3, Hamming codes (ire single

error correcting.

,.
oreover, with the aid of the matrix2H the deCoder

.

,

can eagtly correct any single error'. For suppose a single

error occurs (say in position i) in thetransmitte&coSe-

wordlc in C,- s; that the channel. decoder receives an n-tuple

r'whichAiffers from, co'nly in position i. Then, since 1

- -.-

cHT = 0, ,

rHT = (r-c)H T
= (0, 4.1.; 0, ...0)HT = ., 2

(the fill Column of H, i.e., the binary representation of i),

thus enabling the decoder to determine the 'position of the ,

error.

Exercises

14. Find a parity-check matrix for the (15,11) Hamming code.

14

19 ,
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15. Find a generator matrix for the (7,4) Hamming code.

fifr-VlurkimTwith the (7-,--kriainmfrrif-t-o-darTcf 5u m I n §Thrsmo re- tlian

one error occurs during transmisionwhat codeword Was

transmitted if (0,0,1,1,1,1,1)'was received?

3.4 Perfect Codes

that a c odes t error- correcting if the'

closed balls ft(c,t)) of 'radius t with centers at the code-

words are pairwise disjoint., If, furthermore, these balls

, fillthespace (i.e., their union is all of Vn), the code

is said to be perfect.. To show thdt lamming codes 'lore

perfect, we may use the following counting argument. Let

n = 2m-1 and let C be the (n,n-m) Hamming code. Now

tV = 2n. Each of theclosed balls g(p,1) contains n+I

n- pies. Since 2k, where k = 2m-l-m = n-m! and the

, balls are paiYwise disjoint, th'; union Of the balls con-

tains 2n- m(1+1) n-tuples. A little arithmetic will show

that e.= 2n,1a(n+1) when i = 2m-1.

tt.

3.5 The Baseball Pool Problem
4

'Hamming codes can be used to, supply a simple (albeit

partial) solution, to a rather intriguing problem=in.

Combinatories, the Baseball. Pool Problem: ,"Ona-given-day

n baseball 6mes -aN. to be played., If.a sing14 befis

defined as Pickinthe winner in each of the n games, what
!

is the minimum number of betsone hag 'to make to guarantee,,

choosing ataeastm-i winners?"' ClearlY,'2n-1 betsare

--sufficient 'to guarantee at least-n-1 winners. We solve

. the problem for n of the form 2m-1.- By'denotifig a homelt,>_

team victory by 1 and a home team defeat by A each o-fr

the 2
n
possible bets can be associated with a binary,

4

.

i-n-tuple Cile., a vector in V
n

Noting that Hamming codes
.

are single error-correcting,and perfect, the odiy-bets we

need place to guarantee ourselves at least n-1 WpitirS

are the 2n n-tuples ICthe (n,n -m) Hamming code.; 'Thus,

when n = 2111r4..0 we have Adticed the- suffiCiency number

*to 211. 15

,

o

I

Exercises
.

17. -Show that 2.
n-m

is indeed a minipum.
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5. ANtWERS TO EXERCISES

1. mo0 00110 mein 01101

11001 00110 ,10010 01100

11010 00100 .1:0001 01111

4 11100
. ,

00010 -: 10111. 01001

10000 '01110 411011 00101

01060 10110 00011 11101

11110 .00000 01011 10101

91010 10100 11111 00001

.".c A R.
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TAe 5-tuples below the codewords and above the dotted -line
. ..

differ from the cadeword at the tO-Orirraiii-j-aSlieTC6-6na-are
4

uniquely decodeable. Those 5-tuples below the dottet line differ

in two positions from two or more codewords and are not uniquely..

' decodeable usingonlyothe principleof maximum likelihood.
4=. .

-,' Y ; 9. The codeWords of p can be Obtained by applying p to the code-

00000 10100 10011 10111 00100

01000 11000 11011 11111 01100

00010 10110 10001 10.101 00110

01010 11110 11001 11101 01110

00011, 00111 10000

01011 Olin 11000

00001 .00101 10010

01001 01101 11010

2., 11000will be decoded correctly if and only if a 5-tuple in its

column is received, One-of these 5-tuplesliffersrfrom 11000

in'zero positions, five diffec?in one position, and two differ

words of C. 411

10. The reduced echelon form of G is

in two positions.

.q5 + - 5pq 4 0+ 2p 2 q
3

.

Hence the probability of correct decoding is

0 E=
10-101i
0110 0 1

{0 0 0 1 1 1,

3. Since p < q, ,1/2 <,q Then

q
4 + 3pq3,- q

2
= q

4
+ 3;1-q)q

3
q
2 3

= -2q + 3q- - q2.

4. Since there are only two scalars, there are 2
k

codewords

(n,k) code.

,z)

= q
2
(-2q

2
4-3q-) ILiq2(1/2-q)(q-1) >0.

In an

By applying the permutation p = (34) t the columns of E, we

obt'ain

[100111G ' = 0.1 01 0: 1
0 0 1 0 1 1

.whichis ofthe"form 11
3
P). Then

15. For three nonzero vectors in V -to be linearly 'dependent, we must

gave either_
.

(1) two or more of the vectors are equal, or

(ii) one of the vectors Ls the sum of the other two.

H' =
TI31

=

and applying P
-1

(= P)

1° 0 1 0 0

1 0 1 0 1 0

1 1 1 0 0 1

to the columns of this matrix we get

Since ne4ther of these condtions is true for the three vectors

glyenrthe ve4Ors are linearly. Independent.

6. 'we find the seven nonzero codewords by forming all'possible sums

of the basis vectors taken 1, 2, and 3 at a time. The codewords

are 00000, 10100, 10011, 10111,,00100,00011, 00111, 10000.

As (i) and 11) of EquSfiOnT3Tare obvious, we shall only

prove (iii)

d(x,y) = 4(x-y) = w(x-.z +z-y) < w(x-z) w(z-y) = d(x,z) t2 d(z,y)

As' in Exerclse"1, the table below is not the only posiible one.

O

22
.

O
17

- 1 1 1 0' 0 0

N= 1 6 0 1 1 o .

1 1 0'1 o 1

11- Let C' be the systematic Code generated bythe matrix G' of

Exercise lo.' Then c'-=
''

(1,1,1,c'
4

c5' c6 ') is the codeword of C'

with message digits 111. Furthermore,

c4.= c'0114 + e2q4 + e3g134- = 1.1
. '

c' = eig'15 + e2g125 + c'39135 = 1.1
5

be olitt

c6 c291264- c3936
1.1

+ +1.0 = 0

+ 1.0 + 1.1 = 0

+ 1.1 + 1.1 =

) 18
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at Thusx' = (10,1,0,0:1) and the codewOOki in C with message

digits 111 is, using the idea in Exerdise '3 and the fact thit
-1

p - (34),(1,1,0e1,0,1).

12. Suppose D < 2t + 1. Then there exist two codewords A and y

fi.om x by

where

. such that d(x,y)< 2t +1. Let r e Vn be obtained

changing m of the digits in which x and yljffer,

Id(x,y) < m < Then, f

d(x,r) = m < t and d(y,r) < id(x,y) < t

the code is not t error-correcting.

13. The minimum weight of the code is 1 so that it has extremely

poor error-correcting capabilitieS. In fact a single error in

the codeword '00000'will produce the codeword.00100.

.14. 000000011 1.1.1 111
0 0 0 1 1 1100601.911.
olloollooilooll
1 0 1,o 1 0 1 ol'o 1 0 1 0 1

15. As a parity -check matrix fora code C may be thought of as a1

generator matrix for the code CI, and a parity-check matrix for

CI regarded as a generator matrix for C, all,we need -do is apply

the same technique ap in EXample 2.withtthe roles of G and H

reversed. Doing SO, we lind

H

. .

17. , Suppose A is a collection of bets

guarantee at least' n-1 winners. Then V
n

= U 11§-(a,1)}

acA

(i.e., a subset of V
n
) which

#Vn
fitU (S(a,1))]< ii (a,1)}
acA acA

' (A) (r:4-1) 4> #A > /".1m.

:*

9

'1 11000'0
1 0 0 1 1 0 0

is.a generato'r matrix for the-
() l 1 0 1 0

(7,4) Hamming code. i or
1 1 0 l'O 0 1

.

16. riiT = (claim)

.24

0 0 1'1= (01.1), which is the binary 'representation

0 1 0 of 3. Thus ,there is,a single
-.-

error in position 3 and the code-

word transmitted was (0,0,0,1,1,1,1).

0 1 1

1 0 0

1 0 1:

1 1 0

1 1 1

CeP
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STUDENT tORM-1--

Request for Help

' .

Return to:
EDC/UMAP
55 Chapel St.
Newton, MA 021

_

( °

Student: If you have trouble with a specific part of this unit, please fill
out thia'form and, take it to your instructor for assistance. The information
you sive will help the author to revise the unit.

Your Name
Unit No.

OR OR

Page

Section Model Exam
ProbleurNo.

0 Upper

()Middle

O LoWer

Paragraph Text

Problem No.

.

Description\of DiffioUlty: (Please be spedific)

r.

xwY

Instructor: Please indicate your resolution of the difficulty in this box.
4

4

Correctedertors in-materials. -List-corrections here:

. .

Gave student,better explanation, example, or
(2) Give brief outline of your addition here:

prOcedure'ihan in unit.

As ?isted student in acquiring general. learning and_problem-solving
skills (my using examples from this unit.)

Instructor's Signature _

. .
,

Please use- reverse if necessary.

..... .

vs J
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Name

Institution

'STUDENT FORM 2

Unit Questionnaire

Unit No.

Course No.

Date

Return to:
EDC/UMAP
55 Chapel St. .
Newton, MA 02160

Check the choice for each question that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit?

Not enough,detail to understand the unit
Unit would have been clearer wiah more detail
Appropriate amount of detail
Unit was occasionally too detailed, but this was not distracting
Too much detail; I was often distracted

.2. How helpful were the problem answers?

Sample solutions were too brief; I could not do the intermediate steps
Sufficient infbrmation was given to solve the problems
Sample solutions were too detailed; I didn't need them

3. Except for fulfilling the prerequisites, how much did you mouse other sources (for
, example, instructor, friends, or other books) in order to understand the unit?
4

: 40, Lot Somewhat A Little. Not at all

4. How long was this un
li
t in comparison to the amount of time you generally spend on

a lesson (lecture and homework assignment) in a typical math or science coarse?

Much* Somewhat- About Somewhat Much

Longer Longer the Same Shorter Shorter

0

-N.,
5. Were any of the following parts of the unit confusing or distracting?' (Check

as many as apply.)

Prerequisites
,-----*

Statement of, skills and concepts objectives)
A.

1

Paragraph headings'
Examples I .

Special Aisistance Supplement (if present)-
.

Other; please explain

. 6. Were any of the following parts of the unit particularly helpful? (Check as many

as apply.).

Prerequisites.
Statement ofskills,anA concepts (objectives)
Examples :

Probldis .(

Paragraph headings
Table of Contents
Special Assistance Supplement (if present)

----Orherr*, please explain *.

;
Pfease describe anything in .the unit that you did not particularly like.

Please describe anything that you found particularly helpful. ( Please use the back of

this sheer if 'you need more space.)
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A DOUBLE-gRROR CORRECTING CODE

I. INTRODUCTION

Algebraic coding theory originated in the late

1940's in the attempt to solve the problem of transmqtilig

an'electronic message through a noisy channel. From its
. beginning, as a hybrid of algJaraic and probabilistic

results, the theory has developed, while shedding light

on the original engineering problem, tothepoint
.
it' is being applied in other-areas of mathematics (e.g.,

group theory and coinbinatorics).
.

This module willprovide you 'th a.brief introduction

to algebraic coding theory.via an xample: we will con-

struct a double error correcting code. Only elementary

algebraic techniques will be used. The prerequisites

are an elementary linear algebra course and some facility,

for manipulating polynomials.

If, after.reading this module, you would like to

learn more algebraic coding thory, then The Theoryvf

Error Correcting Codes I and II by F.. MacWilliams and

N.J.A. Sloane is- the book to- see.

\

2. THE. PROBLEM

The followingIsi.pple model is- appropriate for the

study of many communication problem,.

Transmitter
Channel

Receiver

1

For-example, the model could represent a satellite

transmitting radio signals to a station on earth or the

transmission of telephone signals along a cable. For

our purposes we a sume that the transmitter can produce

and send two sy pls, 0 and 1, along the channel to the

receiver. In practice all channels de noisy; i.e.,

occasional , a 1 is transmitted and a 0 is received, or
a 0 is anstitted and a 1 is received. We assume that
there is a fixed nonzero probability, p, of incorrect

transmission. ,The probability of 4orrect _transmission is

q = 1-p. .Such a channel is called a binary symmetric

channel.

a

Let's be gpecific. Suppose you transmit a message,

m m1m24'15' doniisting of a sequence of fifteen

symbols chosenpom {OM through the channel to the
receiver. If r = rir2r15 is received can the

transmitted message be recovered by the receiver?

Since p > 0, r could differ from m in'up to fifteen
places. From th* receiver's point of view any one of 215

possible messages could hav'been tralismitted! However,

p is close to zero la refiab

would pot expect many errors in

message should- -be near ehe recei

annel) he or she

fission; i.e:, the

d in -the SenSe

tlihS they do not diffei in many places. Throughout this

discussion we will assume p is so close to zero that more

thanftwo errors in transmission are unlikely. (If you
.

'know some probability: the probability of two, or fewer
2

33



-7-

.----...--.'s- --'... '7 '''''."' ' ----.7.,- . ..:-. ...--. . 7.., _ _
-

,i.-_.,

, --!-t--,-77-. =: : ,.:.,
_ -<..... 7.---;.--:..:-.:-

,, , -...---,.., _ , _,--....
i e rfar--s: in-----tra_n s fin ssran----1.- '-:-.%;A,.-_-:-;.-..'"-" -_- ., .7,,.-_

--i.

- ,,,, ,
- .

.3. CODBWORDS AS VECTORS---:-:--: ----777--i-7.77 -..
- :. ---

, --.

,,.-4:!;ti< .:-.,:,174,.-,..._
- --__.

--'-2- -"
__ ,.

==-: - -:.. :* ''f' .4'....- - --k
.....---,

15.---- ':-...We--iien'ote the set of.binary-iifteen-tUples by Z2,,,,,,.......-_:.;.-.!...1.......z_

6-- - - %ALIO), apprOaoltes-o- --:-.7a--.*,_3).:4.p-p--r: sfc_ eLsr-.-i4,-fr;).-- - --;--, ---:--: -: -__ _-_-..., ..h.o.r_e? s the field with. two e 1..4:Oen ts ; 0 and , and ---
._.

::,,,-2------::-.'
----:.:---:,-.`'--:*'....:------ - ;------ - -- -- -o_p.rations,_ - - nd -.,:-g-nren:__by the --table below.- - For e-x.a1,e,-.7,:a-t --Ti-1-11.0--- .::_t ben the neS. sage- -' .

..--

is .1 i k e iy to be :aiRang:::-t-Th5-se-:i0:ta*q'k;-.--T10-4-ijrt4-o'--trrf.--r',.':-.. A_ .-.' ---- ...-, _

#

f ewe an WI:th cei. r- s

(105 rr (_1 e
Add on and 14u 1 t ipl iegt.f.ou

11)5-6r ...

--TA)3LE

0r, the solvta--...-the- receilifelf4..,di.lelTinla
Oatirr.-:: -.:-..,,,7.',

+ / 1
,

Brior..to vraiiiiiii-tsi;ciii,:l'i;j4ou:fd- haie.--_-_--b-e7drii.iii-eerl-317:That : - 0- -'1 .

-------,,
only- one..thessige Witlf-_-.twb6,-'-ii_i_:14:ty.e,-r-4-.S7:----1---4-,._a --candidate f or : .-:::_

.- 1 0
trahsmission;- say m r--10.1111111iI111, . Given thi..-5-:7--).f.

.
..--,----1 ..., - -

1 (i) that_ errorS -14P-)Na- .Aqdg-_in ta'arlsthission ;_'....- ... 7,- --

restriction the.:_refei-ier

,-
7 Using the' addition of 22 to add- .

probably a -single in -the third bit,

(iir that the.message w-:(1Dirobably)
1ft

m ...110111-111111111.

0
The rrobbom: Can a set, C, of message words be

chosen from the set of ZU binary fifteen-tuples so that

_
- -wise

the -oCcurrence of two or fewer errors in transmission can
1 (

be detected and correciteeby the receiver? We`Wil refer

to such as.'setts a code and-to its elements as c.;dewords.

Some obvious .chaicesfor C are (0000000000000),

.

{111111111111111} and (0000.0000000000,0;11111111.1111111):-

But, while these choices for!C.satisfy our erroilletec-

tioa and torrection- requirements, they 'do not enable us_

to transmit much information. ,Idealry .0 should Contain

as mtily codewords as possible.: However, since there are
1 5'

22 -1-1 non-empty subsets of binary. fifteen-tuples -(more

than a billion)aine cannot rummage through them at

_ ___raildom--foak-ing- -far- a-, la pge-c-oda,--..lie- t-,-res-tri-c-t -our --

#

attention 0 sets of binary fifteen-tuples which possess

some sort of regular struCtuke. Our approach is algebp.ic.

-:', ,: -177

3

3:!

. .

0
-

.
0

0 1

'0 0

1 0 1

I

elements of Z2
15

1 1 0 1 f 1 0 0 1_ 0 1. 1 1 0 1

0 1 1 04' 0 1 1 1 1 0 1 0,1 1

1 0 1 1 0' 1 1 1 0 1 1 0 1 1 0

com onent-

enables vs to view Z215 as a vector space of dimension-

15 over (the finite field) Z2. . This obse ation

foi the fbllowing reasons:

is 'useful

:(i) The introduction of errors by the channel can

N'e 'described algebraicapy. If m is transmitted and r

is received, then we can write

(1) r = m + e,

where. e'= e 1'62 -.e
15 is called the error word and is

defined as follows:

0 if r.

1 -. if r.

= M.
1

m 1

Notice that _Equation (1) is equivalent to

' (2) r + e

.25
4



since e + e = 0 (remember, 1 + 1 0). Thus; finding e
and adding to r yields the transmitted message.

Problem 1. compute e if m = 1010101010,10101 and

r = 101010111010100..

(ii) Subspaces-of Z
2

15
4are obviouY candidates to

Aserve structured sets of message words--codes.

Better ye

C E Z2

, they are easy to construct! We can take

o be the set of solutions to the equation

(3) Hmt = 0;

where H is some. n xlrignary matrix and'int is the
t, transpose of m = mim2-.-

m1S' The matrix H is called/the

parity-check matrix of the code C it determines. (In

the literature; H is called a Hamming matrix,_and C a
Hamming code.)

.

(iii) The receiver can use the algebraic descrip-.

tions of C and e to advantage. It follows from (2) and
.(3) that

1

Hr
t
= H(m+e) t

= H(mt
+e

t
) = Ht + He t

= He t
.

Case 1. ,Hrt # 0. This means that an error (or

errors) occurred in'transmission since r¢ C. More-

over the error-word is among the solutions to tjie

nonhomogeneous equation Het = Hrt.

'Cas 2. Hrt = 0. This means that r is a codeworde rd

Either transmission was error-free or the,erYor-.

word satisfies Het ='0; i.e., the error-word is a
codeword::

These remarks illustrate e itliortince,ofthe
vector Hrt to the-error deteCt on and correction process.

We will refer to-Hr- t as the syndrome of r and denote it--

0

.
4. A SINGLE-ERROR CORRECTING CODE

'To'use the observations in Section 3 we need to
specify a parity-check Matrix. Let's try

H
I

=

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

1 0 1 0 1 0 1 0 1 0 1 0 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 0 1

The code, C-1, is the set ,of_solutions to Himt = 0 which
is equivalent to the system:

ml + m2 + M3 + M114 + M5 If M6 + M7 + M8 + M9 + M10 + Mil + 2

M1 +
m3

+ M5 + 1117

m2 + m4 +
M6

+ m9

+ m8;

+ m11 m14

+ m10
.47' m12 m15'

These equations are called the parity-check equations of
C 1 . As written, they imply

chosen freely from 0,1 as

chosen to be the appropriat

chat,mi,m2,44
2

may be

long as m.. and mIs are

ums. (You might; think of '"

mi,m2,,m12 as infarmatiOnbits and ma.,
m14,4"4 m1S

as check bits.) This obserVation '(or the number of
columns of H

1
minus the row rank'of H

1
) implies th;tthe ;

dimension.of C
1

is 12 and IC 1 = 2
12

.

Problem 2. List a few of the codewords.

With this code you can transmit a lot of messages.L
How does the receiver fare? Let's suppOse yokf transmitted
m and he received r = 11111111f110,000.

, -..
1 -

Since H
1
rt = 0 at least one error occurred in trail's-

1
qtr4

mission and the error-word is among the solutions to

H 1

1et = J01, which is equivalent to, the nOnhOmogeneoUs
1

1'

system ,

6



lags

el +e2+e3+e4 +e
5
+e

6
+.e

7
+ e + e + + ell +

el + ei + e
5

+ e
7

+ e9 + ell
9

e2
+ e

4

=1

+ e
14

= 0

+ e
6

+ e
8 + e10 + e

12
+ e

15
= 1.

The receiver might solve this system and look for error- 1

words in the solution set which have its in only one or
two positions. A shortcoming of thig4approach i that .

after solving the system the receiver must examine 2
12

r.
wordsr This is bound.to be time consuming (expensive)!

A more efficient approach'to erroT.identification

fro view the syndrome of r, 0 =
Hi%.4

e
t

, as a linear combina-
.

1

1

tk
lion of the columns of H1: ,

,

. /
t

0
1[ 2

3 t u e e u. 7

1 0

ls

°1

1+e
1

0 +',..el'+el!P 1 :1: 1

1

+e-1
0

+,

e

+ e [11 +7 e 1 + e ° 1' + 1\ + 01 + e' 0 .+

[81.1J 9 0
10 u

1
1,

0 ft 9 1 .
13

0
.

0
. M 1

+ e 1 -+ e 0] g. 10]
'1.' 0 . "' 1 I.1

.11Ikt

The error-words with a'single.1 are easy'to find: Om' 1 '.,

'must'occur in a position cdrresponding to a column Alia"
equal. to the syndrome. All such errorlwoilt, and thq,,,'

folloy4' array..
. denotes the ith column of H-

. correspondine*ssages; are listed in the

o
%

0e

which illustrates the receiver's problem with this code.'

He has no way of knowing which one of the six equally

likely errorwords actually occurred.

Problem a. If r = 111111111110000 and two errors
.

occurred in transmission, what was m?

4

To avoid this difficulty the columns of the 'parity-
.

check matrix should be distinct. This is impossible

using e3 x15 parity-check matrix since only eight binary
three-tuples exist. Let'S try. a 4 x15 parity-check matrix,
say

H
2

=

'O 0 o*O o () 1..1 1 1 1 1 1 1
4-2-

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0 1 0 1 0.1 0 1

.Problem 4. ,Why is it a bad idea to have a column of

0's in a parity-check matrix?'

The'dimension of C
2

is eleven so there are 2 11

,..
todewords; fewer than in C

1, but the receiver can now
',-,

'detect and correct any Ingle error in tran4misssie

I/
Indeed, a single error occurs in the ith position' f, and, .

I.

only if,"

=s= H2 r
t

H
2
e
t

= c.,

111111111110000, +

.'

'fir. .

"tr2;

0100000000.00000

000100000000000

0.00001000000Q00

0000001000000

6000d0000l00000

cloommool000

1 . 2%

'4 N Example 1. If r = 110000111111101, then transmission
101111111.1100001 was incorrect since 0

7

a
1

H
2
rt

0
[11 # 0

f .

Assuming a single error occurred, it was in the tenth

pdsition since the syndrome is the tenth column of .H, ,
Thus

1

.

.

114f 8



I '

= 000000000l0000tr

=

Note that each column of H
2

can be viewed asothe

binarytepresentation'of the column number. Thus

1100 0011101 11

,, H,r. = iMpliesthe error (assuming-a single error)
fr

; ..,

t [0 ...'

0 , orP"'
.

,

,

.

occurred in the tenth liositiori The receiver simply

changes the tenth bit of r to recover the message.

. .1,. ..
bliem 5. Show that if r = 111100101001101, then'

"-cz.., ---, ,

transmission was incorrect. Assume a single error

occaireC7andrecover the message. Show that more than

one_douLeerrordcan give the same syndromea r.

,

.

5. A-TOUBLE-ERROR .CORRECtING CODE

._

C
2
uSeXul on double errors? If two

transmission, say in the ith and jth

Are H and

eriorsoccur in

poiitions, then

s=H2rt=H2et=c.1 .-1-c . .
3 -

.4

li) 'Detection? the column's of H2 are,distinct

and nonzero,. s c' + whra implies transmission
1

was inciftect.

where cm is the mthcolpmn

providesasecond.equationinc.1
Al

.

A

implles,

c. +

(4) .

f(c.1 ) +

where the eight-component

four-component syndromes.

c.

f(c
i
)

c

f(c%)
3

0

= sly

= s2,

syndrome

of H2

c`

f(c.)

and f(cm) is some cn,

and.c . Specifically,

s
2[l

e

H3rt is'wrictenas two

(ii) Correction? Not hardly! the columnsscorre-

.

. tsponding to the error locations are not uniquely determined
, 4

by the syndrome (see ProbIem.5). This is because
.

...,%

c- c. = s is one (veCtor) ,equation in two unknowns.
1

3
,

other equation -in c.1 and
)
c. would be helpful. If: +;sta

we continue to-thinkof parity-check matrices as'matrices

of CbduMns,
:
then an 8 x 15 matrix of the form

. ,
,

f
c15

f.(cli)
,

9

Whether (4) can he soged uniquely for c and,c

depends on how the function f is defined. Given our .

ability to add columns, and multiply them by 0 or 1, about

the only algebraic choice ?or f is linear:

f(c
m = bcm + ck,

where b e,Z2 and ck is a four:component binary column.

Wiihthis definition of f, the second-equation in (4) is

(bci + ck) + (bc. + ck)
4

b(ci + c0 + (ck'+ ck) = s2,

b(c. c.)
1

Either chpice of b leads to a tedipnt second equation
(c.

1
+ c

j
= s2 or 0 = s2) are:provides no help in.deter-

mining c.
1
and c3.

\ is required. Maybe f(c ) = (c ) 2%
. .

wi.ai:do, if can invent a multiplication procedure :for

four-component columns. The key is to associate each

four-component column with a binary,polynomial of degree

three or lesi. This i4entifitatinn process

./

4'

1.

..



0

_li{

1

o

1

[i

preserves column

0110 +

t

--2

= 0 1 1 0 +.+x2 +x

t

l
= 1 0 1 1 +- x3 + x+

addition.

1011 = 1101 4-)- X
3
+ x

2
+1

as

1

= (x
2+x)

+ (x3.+ x +1),

Problem 6. Which column of H2 serves as the

multiplicative identity under the multiplication just

introduced? Show that c
12

.c = c
1
and c

13 12 = c 14'

Although we will not prove it, the columns of 1-1/2,

togetheE with the zero column, form a finite field with

respect to the addition and multiplication we have just

-introduced: Less precisely, we can manipulate the

columns algebraically as4if they were real numbers. For

example, it follows from the4i,sults of Problem 6 that

= C10and makes column multiplication possible
4

C13/C2
c13 cl2

(0110) (11011) -4--* (x2 + x)(x3 + x+ 1) since c12 is the multiplicative inverse of c2. The fol-
.

lo14ing table will gnable us to multiply and divide
( )

x5 + x4 x3 + x2 + x2 +
modulo x4 * x3 + 1 quite easily.

= x5 * x4* + x3 + x 111010,
TABLE 2

a.lthough closure is not guaranteed, as you can see. This .

Column Multiplication for the Matkix H
2

of Section 4
ideficiency-is not fatal. We can identify x5 + x4 + x3 + x

with a polynothial of degree at most three, namely
12remainder upon division by a (previously agreed upon)' ..."

.
(c 2)2 = c

4
(c 2)7 := c

7
(c

2
= c3

fourth degree polynomial, say p(x) = x4 + x3 + 1. 'Since :
.

(7) (c2)
3

= c
8

(c
2
)
8

= c
14

. (c
2
)
13

= c
6

x If t
1

,. (6) x +x +11x +x +,x +.x
4 ,3--. I 5 4 3

-

r
.

(c2)
4

= c9 (c 2)9 = c-
5

(c 2)14 = c
12

(c 2)5- = c
11 (c2)

15
=

4.3.
(c2)

10
= cX5 + x4 + x 10

3 6x 11

`(c2)
cis

-

cc2) = c13

x5.+ x4 + x3 + x is identified with x3 We denote this

identification byx 5
+ x4 + x2 -i-xEx3 and say

xS-f- x4 + x3,+-x is congruent to x? modulo Z4 + x3"+ 1.

It follow from (S) and (6) that

(0110) (1011) = 1000;

that is,

11

Problem 7. Verify that (c2)" = cli and;determine the

multiplicative inverse of each c,, 1 < i <

By now You have probably .guessed'that choosing

p(x) = x
4

+ x3 + 1 to,get multiplicative closure was no ,

4.
accident. It 'yasn:t.. A discu'ss4on-of the properties of

x
4+ x 3

+ 1 whjch guaranteesuch 'a nice column algebra can
12,

43



4

be found in The Theory of Error-Correcting Codes I by

'MacWilliams and Sloane.

The requirement f(c
m

) = (c
m

)
2
is legitimate now that

we have invented a way to square columns, but it is not

useful. The.second equation. in (4) becomes

(C.)2 (c.)
2
= s

2'

Which is redUndant, since

(si) = (ci + cj) 2

an.to

= (c.)121
J 1

+ c.-cj . + ( cj )

}

'Since sl # 0,

s2/s, = cicj + (s1)2,

so that

c..c. (s1)
2

s2/s1

which implies

c .

4 ...,
...

b&tiS tuting for c
j

in c
i

+ c
j

= yields

1

= (c.) 2 + (c.-c. + c..c.)0(c,) 2
(Remember, 1+1=0.)1 . 1 3 1 3 ,r,,,, 3

c 4
(Si) + S2

/s1 -= s
l'

0

'2" 12 ci
' (c4) 1..c.j)

2
,

r

..1._

which is equivalant.to

+ s2 /s1.

ci

=.s2,

That is, the second equation is the square of the first.

Pressing on,:we try f(c ) = 3

m
. The associated

system is

c.
3

= s1'

3

3

3 :".

4.

tiotice that 4 -. 2

s
2 = (i 1)3

.

+ (c.)

1 (ci + c.J )((c.1 )
i

+ c kc.
J

(CI cj 4'

(c1)2
c

2.
+ (

j
)

sl,
.

ki cj "c 4" c j ) 2)i

= si '- '-. "Ci ., c + (s1) 21..

. 13

Similarly,

(c

s
1
-C. . 1

s2h-1i
0:

-c
j

((s1)2 + s2/s1) 0.

Thus,the columns c. and c" associated with errors in the

ith and jth positions must satisfy the quadratic equation

k

22 + s
1

+ f(s
1
)2 + s2/s1) = 0.

If only one error occurs, say in the ith position, then

ci =^s1 and (s1)3 = s2.

We have.solved the'prOblem posed in Section 2. The
code, C3, is the set of soluti to H

3
m t = 0,where

14



H3

O

c 1 c
2

(C1)3, (c2 lcc1155)31

-0 0.0 0 0 0 0 1 1 1 11 1 1 1

0 0 0 1 1 1 1 0 0 0 0 1' 1 1 1

0 1 1 0 0 11 1 0 0 1 1 Q 0 1 1

1 0 1 0..1 0 1 0 1 0 1 0.1 0 1

0 1 1 I 0 0 0 0 0 0 1 0 1

0 0 1 1 0 1 1 1 0.0 0"0 0 1 0

0 1 1 1 0 1 0 . 1 0 0 1 0 0.0.

0 1.1 1 1 1 1 1,1 1 1 0 1.0_

Problem 8. Dettrmine the number of codewords in C3..

Our instructions to the receiver are': upon receipt
.of r, first compute

Then: . .

sl,r =
s
2

.

[B

p

Example . Suppbse r = 101110000110001. Computing

H3rt yields

and

si cl c5 c4 ''cs c11 c15 o c13

(c1)3 t (c3)3 Gcc,03 (c5)3

1
'

1

0

(c10)
3

+ (c15)3

Since s1 # 0 and (s1) 3
= c8 #'s2, we are,in case (iii)

above Equation (9) becomes

.. 0

since

0

22 + c15. Z + cli F 0!

.' .

(L) If 's, = 52,:-= 0, assume no errors occurred. I 40

. . (ii) If.s1,/ 0.and s2 = (s1) .3 , assume a single error 0. . ,

'Aaccurredin the ith position where sl = ci.
f..

00
(iii) If si # 0 and s2, # (s1)3, examine ,

c

{c 1 k < 15} for,sOlutions to.the quadratic equation .

ITQsfing,for roots, we find that
.

1

....-, (.==.'

.

( c3)
2.4-

c
3

+ c.13 11
..1',.

°(s2)/s1 = fc
2Eii + (c2)10/(c2)11

= (c2)
22

+ (c2)"

(c2)
7

.(c2).

c7
-

llc= .

If two solutio'ns, ci and ci,.are Mound, assume errors

occurred in the ith andjth positions. otherwise, assume

three errors occurred (and rdquest retransmissipn)

(iv) If s
1
=.0and s

2
# 0, assume thfee errors

°courted (and request retransmiSssion).

15

and

j

, . '(c14)
z

4. 613 C14 ;" 0'

which imply errofoccurred'in thetr'd and 14th

4 1

a

pOsition.
16
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The was (probably)

7 4

1 4. If the ith column is a column of, zeros then a single error in

the ith colUmn will not be detected; i.e.,
100110000110011.

t t
it

a.ilm +He .0+0=0 if e = 0 010 0.
Problem 9. Apply the receiver's, instructions to

ith position
,. r1 = 110100010110010

,

,

5. If a single error occurred it was in the Gth position since --7.

.
.r2 = 0100001110,14W00

H2rt = c4. TherefOre to:. 111000101001101. Since
-17-----

= c4 errors in the 11th and 15th positifonsr3 = 110100011000010
1

C 11 + C15 C3, + C7

%. - or in the 3rd and 7th positions give the same syndrome.
'

r4 z*:' 110000010100011
.

t 6. c 1+4 1 is the:Multiplicative identity
and recover the corresponding message when possible.

I

10..", Conjecture the form of a parity-check

matrix, H, for a code that will detect and correct up to
ithree errors in transmission.

lic
6. PROM,EM SOLUTIdIS

1 . .r = m+ e implies m = r + e

m = 101010101010101-
+

r = 101010111010100

e 1 000000010000001

O

2.
1
=9000000000000000,1%,

c
2 ='0/1a11011101011

c
3
= 111111111111000

A

c4 = 111000000000101
.

.

A
1t.

[1

1

4 1
The or.ily rgo, columns of H

1
which sum to 0. are the

1

13th 44 15th. Thus c = 000000000000101 and m= r 4- e ='

o. ^

,1111111iii10101.
48, -

-17

"--.L.

-10*

(x
3
+

c c c since c12 +4 x
3
+ x

2
c2 +4 x, and

,'

12 T 1 12 2 op

x2)x.... x4 x3 1

.x4 x3 x4' x3

x4.;x3 + 1

1

-

c
13

c
12

=
10

'since, c13 +4- x
3
+ x

2
+ 1, oi

. -*

and
3 . 2 .

1)(x .

x + x +tx + x2
3 2 3 2 6 4. 3

3x + c'
10

2x + x
4 3 I

x6
4 3 2x + x 41 x + x. + + x

x + x5 x2

x5 + x4' + x3

x
5

'+ x4. + x

(ci)
5

x5 = 3 +x+ 1
" cll

+ x

0



3
x
4
+ x + 1 x

5

x
5
+ x

4
x

x
4

+ x

x
4
+ x

3 +1
x
3

+ x + 1

ol . . c. = Ca c = c c.c1 c4
3 9 13 cll

c10 = c15 ; c5 ,-

1 .
4

c7 c14 e2 'el2
1.

18. Since the rowraak of H
3

is 8 the dimension of C
3

is 15
1

Therefore IC31 = 2
7

.

9. Compute Hri =
t .

s 1]

[

4

, r/: s1 = 0, s2. = c5 implies that at least three errors occurred.

Ask for a retransmisgion.

r2:' s = c15, s2 = 0, (s1)
3

i s2 implies, hat

i the"2nd and- 13th positions since the roots of
AM"

lel?'
z + c

15
.,zA 4 (c

15
)
2

= z
2
+ c15

.
z + c

3
= 0 are 5.2_ard-ti-3.

m2 = 000000f11010100. /

I

[
r3..: s1 = c13, s2 = c5, (s1)

3
= s

2
implies that an error

errors occurred

occurred in the 8th position. m
3

= 110100001000010.

r4: s1 = 0, s2 = 0 implies that m4=

10. This is a difficult problem, and a complete solution requires the

developMent of thefinite field theory behind our choice of
-

p(x) = x + x3 + 1. Such a development is beyond the scope/of

this module (see The Theory. of Error Correcting Codes I and II,

by 'MacWilliams and Sloane). Still, an educated guess is.possible.

-indeed, our-discussion'at the beginning of Section 5.suggests that

we might add four rows to H
3

to correct the third.error. The

19

I

matrix we obtain, say Henrould be a 12 x15 matrix andzthe

syndrome of a received word could be written
4*

eSi

s
2

s
3

.4

where each s
i

is a binary four - component column vector. Thus,

and

1

c2
c15

(c g(c2) , r g(c15)

15

3

cj +
ck

= s
1

(*) c 3 +. cj3 + c 3 = s2
2

g(ci) + g(cj) + g(cklmc s3,

. .

where errors occur in the ith, jth,and kth positions, and the

fiction g is' to be determined such that ( ,) can be solved

uniquely for ci, cj and c. How should we define g? Since

g(ci) ci, g(ci) = ci
2
andlg(ci) = ci

3
won't do, let's try

g(ci) =. di
4

. Then

s3= ci4 + cj
4 +ck4

:1

'

= (c
i
2 )2 + (c.

2
)
2
+ (c

k
2

)
2 -

(c:21.c.j2)2 2 2

cj? + ck2)2

= [(ci+cj)
2

+ ck
2
If

V
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= f(ci + c;,+ ck)21? 7. MODEL EXAM

-= (ci + cj ck)

4

1. The binary matrix

sl 1111
1 1 1 1 0

That is, the first and-third equations' in (*) are redundant.
H= 0

1

1

0

1

1

1 1

0' 1
Ourriextguessisgci ). cis. Hard as you may try, you won't,

be ablOo find any redundancy in phe system.

+ cj + c
k

s
1

c
i

3
+ cj

3
+ ck = s

2

5 5 5
cis + cj ck = .s3

Conjecturer

O

cl c2
15

. . c

3 '

..0 15

5

c15

21

determines a code Obcontainetin Z25.

a. Compute the syndrome Of r = 10111.

b. Is r a codeword?

c. How zany codewords are there in C?

d. List all of the codeworTkin C.

e. If r is received, what is.the most likely message?

f. The code C can detect all single errors. Can it

correct all single errors? Why?

* 2. Solve the equation x6 +.x
4

+ x
2

+ 1 e p(x) (modulo

x
4

+ x3 r+ 1), wherep(x) is a binary polynomial, of

degree at most-three:

3. This probleni refers to the code C3tof Section 5;

Determine4 if possible, the message if

r = looloolloolono is received.

AK#,,

'4. is it possible to apply the results of the module

to4a binary symmetric channel /AT 41?

22



t.

.

.

1. a.

8. 1101DEL EXAM SOLUTIONS

41,"

41 r Since

S =
1 1

= c2, and s2 =

, 6

\\

0 3
= c

8
= c

0,

0

we conclude that a single error occurred,in the second position.

That is, the'message.Was 110100110010110.

b. rWo

c. 2,

.

do. -,..*

e.,

,-

2
=

k'

1 1 1 1.0

0 1 1 1 I

J. 0 1 0 1

10011.

4.

m
1

2

m4
m
5

-

=

0

r
m
,3

=

Therefiare;

C =. {00000,

4.

m2= m4 + m5, and

01010', 11001, 100111;
4",

'
Yes. If a O'is received, rewrite it as a 1.

rewrite:it as a O.

t
0

If a 1 is riteived,

I.

f., No. If 000101s received, then 00000 and 01010 are equally

likely to havebeen sent.

p(x) * x + 1, since

3.

H
3
r

3
x4. + x + 1

;0'

1
0

1
0

0

x
2 + x

'
x
6 +x4 +x2 + 1 '

x
6
+ x

5
. + x

i

x
5
+ x

4"
. +1

+ x
4

x

x

...
ot..

,.
0 implies4hat at least one6error ocarred in

transmission. , \
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STUDENT FORM 1

Request for. Help

Return to:
EDC/UMAP
`55 Chapel St.
Newton, MA 02160

Student: If you have trogb0 with a specific part of this unit, please fill
out this form and take it to your instructor for assistance. The information
you give will help the author to rSvisd the Unit.

Your Name

Page

0 Upper

()Middle

0 Lower

OR
Section

Paragraph

Description of Difficulty: (Please be specific)

OR

Unit No.

Model Exam
Problem No.

Text,

Problem No:

8

Instructor: Please indicate your` resolution of the difficulty in, this box.

Corre6ted errors in materials. List corrections here:

.Gave student better explanation, example, or procedure than in unit.
Giire brief outline of your addition here:

Assisted student in acquiring general learning and probletsolving
skills (not using examples from this unit.)'

zi

Instructor's Signatuke

Please use reverse ir;necessary. .



O
STUDENT FORM 2-

,-Unit Questionnaire.

Name t \ scei'f Unit No
. m

Institution ... Course No.

Return to:
EDC/UMAP
55 Chapel St.
Newton, MA 02f60

Date

Check the choice for each question that comes closest to your personal.opinion.

1. How useful was ehe amoun\of detail in the unit?

Not-enough detairto 'understand the unit
Nit would have been clearer with more detail
Appropriate amount of detail
Unit was bccasionally'too detailed, but thiszwas not distracting
Too much detail; I was`, often distracted

.

2. How helpful were the problem answers?

Sample solutions.were too brief; I Could not do .the intermediate s s'

Sufficient informAion was given to solve the problems ,

Sample solutions were too detailed; I'didn't need them

3. Except for fulfilling the prerequisites, how much did you use other sources (for
example, instructor, friends, or other books) in order to understand the unit?

A Lot Somewhat A Little Not at all

4. How long was this unit in comparison to the amount of time you generally spend on'
a lesson (lecture and homeWork assignment) in a typical math or science course?

'-Much , Somewhat About Somewhat Much

Longey Longer the Same Shorter Shorter

5. Wee any of the (5 the unit confusing or distracting? (Check

as many as a'pply.)

Prerequisites
Statement of skills and concepts (objectives)\
Paragraph headings
Examples
Special Assistance Suivlement (if present)

Other, please explain

Were any of the following parts of the unit particularly helpful? (Check as-many

as apply.)
Prerequisites
Statement.' of skills and Concepts -(objectives)

Examples
Problems
Paragraph headings
Table of Contents.
Special Assistnce Supplement ,(if present)

Other, pleaskeiplain,'

f

Please describe anything in- the unit that you did not partV.cularly like. '

Please describe_ anything that you found particvlarly\ helpful. (Please use the back of '

this sheet if you need, more space.) .
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